

Almost invisible cloak in Oracle
databases or the

“undocumented” helps us again
László Tóth

donctl@gmail.com

Disclaimer

The views expressed in this presentation
are my own and not necessarily the views
of my current, past or future employers.

Content

• Introduction
• Warmup example
• Quick introduction to Oracle auditing
• General introduction to oradebug
• Oradebug as a hacker tool
• Oracle authentication backdoor on Linux
• Protection
• Summary

Post-Exploitation

Everything will be post-exploitation so
you've already gained the highest level

of access

Warning

Don't try this on a production system!
For education purpose only!

Warmup example

Warmup example

Thanks to David Litchfield, one of the method is to check
the deleted records in the tablespace file.

Quick introduction to Oracle
auditing

AUDIT

Standard Auditing

SYS Auditing

Fine-Grained Auditing

Listener Log

AUDIT_TRAIL

AUDIT_SYS_OPERATIONS
TRUE

FALSE

DB

DB, EXTENDED

OS

XML

XML, EXTENDED

NONE

AUDIT_SYSLOG_LEVEL
FACILITY.LEVEL

Quick introduction to Oracle
auditing

Lot's of things should be considered here,
but for keeping it simple for the demos we
consider the following scenario:

Send the logs ASAP out of the system to
protect them from the modification

Quick introduction to Oracle
auditing

Aug 18 18:42:39 hekkcampub64 Oracle Audit[5462]: LENGTH : '165' ACTION :[7] 'CONNECT'
DATABASE USER:[3] 'sys' PRIVILEGE :[6] 'SYSDBA' CLIENT USER:[8] 'user1' CLIENT
TERMINAL:[7] 'laptop12' STATUS:[1] '0' DBID:[10] '1287233851'

Aug 18 18:42:39 hekkcampub64 Oracle Audit[5462]: LENGTH : '164' ACTION :[6] 'COMMIT'
DATABASE USER:[3] 'sys' PRIVILEGE :[6] 'SYSDBA' CLIENT USER:[8] 'user1' CLIENT
TERMINAL:[7] 'laptop12' STATUS:[1] '0' DBID:[10] '1287233851'

Aug 18 18:42:39 hekkcampub64 Oracle Audit[5462]: LENGTH : '164' ACTION :[6] 'COMMIT'
DATABASE USER:[3] 'sys' PRIVILEGE :[6] 'SYSDBA' CLIENT USER:[8] 'user1' CLIENT
TERMINAL:[7] 'laptop12' STATUS:[1] '0' DBID:[10] '1287233851'

Aug 18 18:42:43 hekkcampub64 Oracle Audit[5462]: LENGTH : '193' ACTION :[34] 'select *
from sys.test_audit_table' DATABASE USER:[3] 'sys' PRIVILEGE :[6] 'SYSDBA' CLIENT
USER:[8] 'user1' CLIENT TERMINAL:[7] 'laptop12' STATUS:[1] '0' DBID:[10] '1287233851'

Quick introduction to Oracle
auditing

Aug 18 18:37:59 hekkcampub64 Oracle Audit[5423]: LENGTH: "357" SESSIONID:[6] "480110"
ENTRYID:[1] "1" STATEMENT:[1] "1" USERID:[6] "SYSTEM" USERHOST:[17]
"WORKGROUP\laptop12" TERMINAL:[7] "laptop12" ACTION:[3] "100" RETURNCODE:[1] "0"
COMMENT$TEXT:[99] "Authenticated by: DATABASE; Client address:
(ADDRESS=(PROTOCOL=tcp)(HOST=192.168.56.1)(PORT=49288))" OS$USERID:[8] "user1"
DBID:[10] "1287233851" PRIV$USED:[1] "5"

Aug 18 18:38:05 hekkcampub64 Oracle Audit[5423]: LENGTH: "350" SESSIONID:[6] "480110"
ENTRYID:[1] "2" STATEMENT:[1] "9" USERID:[6] "SYSTEM" USERHOST:[17]
"WORKGROUP\laptop12" TERMINAL:[7] "laptop12" ACTION:[3] "103" RETURNCODE:[1] "0"
OBJ$CREATOR:[3] "SYS" OBJ$NAME:[16] "TEST_AUDIT_TABLE" SES$ACTIONS:[16]
"---------S------" SES$TID:[5] "75713" OS$USERID:[8] "user1" DBID:[10] "1287233851"
PRIV$USED:[3] "237"

Aug 18 18:38:07 hekkcampub64 Oracle Audit[5423]: LENGTH: "223" SESSIONID:[6] "480110"
ENTRYID:[1] "1" USERID:[6] "SYSTEM" ACTION:[3] "101" RETURNCODE:[1] "0"
LOGOFF$PREAD:[1] "0" LOGOFF$LREAD:[2] "65" LOGOFF$LWRITE:[1] "0" LOGOFF$DEAD:
[1] "0" DBID:[10] "1287233851" SESSIONCPU:[1] "5"

Quick introduction to Oracle
auditing

Message for the Management:
– The SYSDBA/SYSOPER users are handled

differently than the normal users
– Audit log can be in several forms and several

places
– Central log collection and management is a

good idea

The undocumented

Really?
– Tanel Poder: Advanced Research Techniques

in Oracle (NoCOUG 2006)
– www.oracleutilities.com/SQLPlus/oradebug.ht

ml (2003?)
– psoug.org/reference/oradebug.html
– Norbert Debes: Secrets of the Oracle

Database (book)

The undocumented

Meanwhile in the session handled with process with procid 11828

The undocumented

The undocumented

As a hacker tool?:
– Some mentions it can be dangerous

(Alexander Kornbrust, Pete Finnigan)
– Blackhat 2011 (THIS YEAR) David Litchfield

showed how to run operating system level
command (a bit complicated way)

The undocumented

Why? For example:
– Even if the SYSDBA audit is used the oradebug

command is not logged in that way
– It will be logged into a trace file, that can be

deleted by a SYSDBA
– POKE and PEEK commands allow to manipulate

the oracle memory directly (DUMPVAR/SETVAR)
– CALL allows to call any function inside the oracle

process
– ...

The undocumented

The undocumented
• SYSDBA audit switched off
 oradebug poke 0x0600340E0 1 0
• Standard Audit switched off
 oradebug poke 0x060041BA8 2 0
• Operating system command was run
 oradebug call system "/bin/ls -l>/tmp/ls.txt"

The undocumented

The beginning of the kzaAduit function of the
oracle process.

The undocumented
• On Windows it is more dangerous, because

Oracle runs under the SYSTEM user
• Oracle is multithreaded not multiprocess on

Windows, thus there is another interesting
possibility

• At the beginning of this year I demonstrated how
Oracle authentication can be switched off

The undocumented

With the help of the Titan Engine it is quite easy

The undocumented

The core of the PatchEx function from the Titan Engine

The undocumented

• We can use VirtualProtect function to
change the memory protection of a code
page

• With “oradebug” we can call functions
inside the Oracle process

• and Oracle on Windows is multithreaded

The undocumented

The undocumented

The undocumented

And the fun part:
– After a successful authentication the server

sends the encrypted SERVER_TO_CLIENT
string (AUTH_SVR_RESPONSE) (11g)

– We need a modified client to be able to login
with a wrong password

– A normal user with a normal client won't see
any difference

This is how a security measure helps us to
hide our presence!

The undocumented

Can it be done this on Linux?
– Tanel Poder in his presentation showed the

_oradbg_pathname parameter
– Oracle runs the command given in the

parameter if the right event is configured
alter system set events 'logon debug';

– The parameter of the command is the
process_id of the oracle process

The undocumented

Finding the address is difficult, overwrite is easy

The undocumented

ptrace:
– ptrace_scope on Ubuntu (from 10.10) (The

parent can debug the child. A user cannot
debug it's own processes.)

– SELinux (good luck)
– Use the audit subsystem to detect ptrace calls

(it's not perfect):
 auditctl -a entry,always -F a0=16 -S ptrace
 auditctl -a entry,always -F a0=0 -S ptrace
 auditctl -a entry,always -F a0=7 -S ptrace

The undocumented

• But we don't need ptrace, because we
have oradebug!

• VirtualProtect ↔ mprotect
• It is simpler because you don't need

malloc here:

int mprotect(const void *addr, size_t len, int prot);

The undocumented

The undocumented

Excerpt from the perl script. Off course you have to check
whether it is remote or not, because of the recursion...

The undocumented
• With the help of oradebug we:

– We switched off the authentication for the non
SYSDBA users on Windows

– We switched off the authentication for the
SYSDBA users on Linux

– And if we consider the previous actions, we can
say easily oradebug is a useful command...

– Of course more testing is needed how the attacks
(audit, authentication) work with different
configurations and cases

Protection

• Do not forget there are many ways for a
DBA to become SYSDBA e.g.:
– He can access the file system in the name of

the oracle user (SYSTEM on Windows)
– He can run operating system level commands

in the name of the oracle user (SYSTEM on
Windows), for example with java

– ...

Protection

Everybody knows this

Protection

DBA to SYSDBA

Protection

DBA to SYSDBA

Protection

Fixed tables - presents the oracle memory - help in the detection.
(Thanks Alex for the idea)

Protection
• The generated trace files should be monitored
• “diagnostic_dest” parameter (/u01/app/oracle be defualt)

from 11g (OFA, ADR). For example:
/u01/app/oracle/diag/rdbms/orcl/orcl/trace/orcl_ora_29849.trc

• And do not forget:
 alter session set tracefile_identifier=aaaa;
 alter system set diagnostic_dest='/tmp'

PID of the generating oracle process

Protection
• It is not trivial task to monitor text files that are

newly generated and their names are different
• For example the default syslog on RedHat and

on Ubuntu does not have this feature (rsyslog)
• More security features should be considered on

the given platform e.g.:
– Audit subsystem
– Special file access rights (yes there is more

than 'rwx'...)
– ...

Protection
• I wrote a PoC that uses the inotify feature of the

linux kernel to detect the new file creations
• The oradal (ORADebug Attempt Logger) was born
• More testing is needed to understand which audit

events and inotfy events can be connected together
as an attack attempt

• For example the SYSDBA modifies the file from the
database

Protection

Oradebug Alarm Screen

Hardware support for oradal

Questions

Summary
• Configure audtiting is not easy
• The “undocumented” oradebug can be used as

a hacker tool (Commodore 64 style)
• Besides the audit we should consider to collect

and analyze the trace files from security point of
view

• Arduino is fun :)

• http://www.soonerorlater.hu/
• http://blogs.conus.info/
• http://www.red-database-

security.com/wp/oracle_rootkits_2.0.pdf
• http://www.databasesecurity.com/oracle-backdoors.ppt
• http://www.databasesecurity.com/dbsec/Locating-Dropped-

Objects.pdf
• http://www.codeproject.com/KB/DLL/code_injection.aspx
• http://null.co.in/section/atheneum/projects/ (jugaad)

URLs

